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Abstract. The two-site Holstein model with different site energies, the simplest model to mimic disorder,
is analytically studied by a diagonalization method of coherent states. The solutions obtained in our work
are exact, and agree well with those derived by a modified Lang-Firsov (MLF) method in the weak- and
strong-coupling regimes. The deviation from the MLF solution in the intermediate-coupling regime implies
that our solution, including the higher order correlation terms overlooked in the MLF treatment, gives a
more accurate description. To check the validity of our approach, we have also calculated the case with the
same site energies, which shows that our exact solution could be consistent with a previous treatment of the
Holstein model using the coherent expansion method [Phys. Rev. B 65, 174303 (2002)]. The method and
the results in the present work would be useful for testing various approximate methods for the Holstein
model, and are applicable to more complicated situations.

PACS. 71.38.-k Polarons and electron-phonon interactions – 63.20.Kr Phonon-electron and
phonon-phonon interactions – 71.10.-w Theories and models of many-electron systems

1 Introduction

The Holstein model [1] has been widely employed for
studying the interaction between narrow band electrons
and the local phonons in crystals. In the case of weak
electron-phonon (e-ph) coupling, the Holstein model can
be solved under the Migdal approximation [2], which in-
volves renormalized phonons and electrons with effective
mass. However, this approximate approach cannot work
well for strong e-ph coupling with small polarons pro-
duced by self-trapped electrons. As strong e-ph coupling
is important to current studies for various new materi-
als such as Tc cuprates [3], manganites [4], organic poly-
mer conductors [5], and for charge transport in DNA [6],
we had to use instead the Lang-Firsov transformation [7].
We found that although it could improve on the Migdal
approximation in several aspects [8–10], the Lang-Firsov
transformation is still unable to yield quantitatively ac-
curate results. That is why a modified Lang-Firsov trans-
formation, referred to as the MLF method, was recently
proposed [11,12] and widely adopted. In addition, the Hol-
stein model has also been investigated numerically [13–16].

In this paper, we focus on the few-site Holstein model,
which is not only simple enough to lead to accurate and
analytical results, but also gives similar features to that of
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the many-site Holstein model under strong e-ph and short-
range interactions. Due to the localization of the polarons,
i.e., the effective distribution over only a few sites, the
few-site Holstein model involves the essential characteris-
tics of the many-site one. The two-site Holstein model is
the simplest few-site model [17–19], for which exact solu-
tions have been derived analytically using continued frac-
tions [18] and in [20] by using coherent-state expansion
method [21,22]. However once disorder is introduced in
the Holstein model, the above models no longer work and
we have to resort to a more complicated model, for exam-
ple, the Holstein model with different site energies.

We note that a MLF method, using a fifth-order per-
turbative expansion, was used to investigate a two-site
Holstein model involving disorder [23]. Nevertheless, since
the essential characteristics of the Holstein model, e.g., the
correlation function, is very sensitive to the high-order cor-
relation terms, it is natural for us to ask if we could have
a more accurate description of the disordered situation by
involving expansion terms higher than the fifth-order. In
the present paper, we will exactly solve a two-site Holstein
model with different site energies, the simplest model for
mimicking disorder. Our method, basically analytical, is
based on diagonalization in two Fock-state subspaces after
some transformations. The favorable features of this ap-
proach are that: (1) it could apply to a wider range of pa-
rameters than in [20], e.g., for both the same and different
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site energies; (2) it could present a complete and exact
eigenenergy spectrum; (3) it can be directly extended to
a Holstein model involving more than two sites. In what
follows, we will first present our analytical solutions, and
then compare to results by numerical computation and by
comparison with [20] and [23].

2 The model and our solution

The two-site Holstein model under consideration is

H = ∈1 |1〉 〈1|+ ∈2 |2〉 〈2| − t(|1〉 〈2| + |2〉 〈1|)
+ ω(b+

1 b1 + b+
2 b2)+g1 |1〉〈1| (b1+b+

1 ) + g1 |2〉〈2| (b2+b+
2 ),
(1)

where the first two terms are for electrons in different sites
with different energies ε1 and ε2, t is the hopping integral,
and ω is the frequency of the local phonon. bi, b

+
i (i = 1, 2)

are annilation and creation operators of the local phonons
at the ith site, respectively. g1 accounts for the on-site
coupling between the electron and the phonons. With the
different on-site energies introduced, the two-fold degen-
eracy in the ordered Holstein model disappears in the ab-
sence of the hopping. So such a model makes it possible
to investigate the competition between the inter-site elec-
tronic hopping and the localization of the polaron. After
a transformation, a = (b1 + b2)/

√
2, d = (b1 − b2)/

√
2 in

equation (1), we have

H = Ha + Hd, (2)

where

Ha = (a+ + g)(a + g) − g2, (3)

Hd = ∈1 |1〉 〈1|+ ∈2 |2〉 〈2| − t(|1〉 〈2| + |2〉 〈1|)
+ d+d + g(d + d+)(|1〉 〈1| − |2〉 〈2|), (4)

with g = g1/
√

2. We have assumed ω = 1 for simplicity.
As Ha represents a collective vibration, which is nothing
to do with the e-ph interaction, our investigation below
will be made only in equation (4), for which we assume a
static solution to be

|〉 = |ϕ1〉 |1〉 + |ϕ2〉 |2〉 , (5)

with |ϕi〉 the wavefunction of the phonon at the ith site.
Putting equation (5) into the Schrödinger equation of
equation (4), we have,

∈1 |ϕ1〉 |1〉+ ∈2 |ϕ2〉 |2〉 − t (|ϕ2〉 |1〉 + |ϕ1〉 |2〉)
+d+d (|ϕ1〉 |1〉+|ϕ2〉 |2〉)+g(d++d) (|ϕ1〉 |1〉 − |ϕ2〉 |2〉) =

E (|ϕ1〉 |1〉 + |ϕ2〉 |2〉) . (6)

Due to the orthogonality between |1〉 and |2〉, equation (6)
is divided into two parts:

∈1 |ϕ1〉 + d+d |ϕ1〉 + g(d+ + d) |ϕ1〉 − t |ϕ2〉 = E |ϕ1〉 ,
(7)

∈2 |ϕ2〉 + d+d |ϕ2〉 − g(d+ + d) |ϕ2〉 − t |ϕ1〉 = E |ϕ2〉 .
(8)

By introducing new bosonic operators, A = d + g, A+ =
d+ + g, B = d− g, and B+ = d+ − g, we reduce the above
equations to

(A+A − g2+ ∈1) |ϕ1〉 − t |ϕ2〉 = E |ϕ1〉 , (9)

(B+B − g2+ ∈2) |ϕ2〉 − t |ϕ1〉 = E |ϕ2〉 . (10)

To solve equations (9) and (10), we may expand |ϕ1〉 and
|ϕ2〉 in complete bases {|n〉A} and {|n〉B}, respectively,

i.e., |ϕ1〉 =
N∑

n=0
cn |n〉A and |ϕ2〉 =

N∑

n=0
dn |n〉B, where |n〉A

and |n〉B are Fock states, respectively, in the subspaces
regarding operators A and B. They can be denoted in the
subspaces regarding operator d (d+) as,

|n〉A =
1√
n!

(
d+ + g

)n
e−gd+− g2

2 |0〉 , (11)

|n〉B =
1√
n!

(
d+ − g

)n
egd+− g2

2 |0〉 . (12)

Therefore, equations (9) and (10) become

(
A+A − g2+ ∈1

) N∑

n=0

cn |n〉A

− t
N∑

n=0

dn |n〉B = E
N∑

n=0

cn |n〉A, (13)

(
B+B − g2+ ∈2

) N∑

n=0

dn |n〉B

− t

N∑

n=0

cn |n〉A = E

N∑

n=0

dn |n〉B. (14)

Then we multiply A 〈m| and B 〈m| in equations (13)
and (14), respectively, which yield,

(m+ ∈1)cm − t
N∑

n=0

dn A〈m | n〉B = (E + g2)cm, (15)

(m+ ∈2)dm − t

N∑

n=0

cn B〈m | n〉A = (E + g2)dm. (16)

Equations (15) and (16) are algebraic equations for coef-
ficients {cm} and {dm}. Direct deduction gives

A 〈m | n〉B =
1√

m!n!

∑

i,j

Ci
mCj

ngm−i(−g)n−jΦ
(1)
ij (g)
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with

Φ
(1)
ij (g) = e−2g2

i∑

l=0

i!
(i − l)!l!

[
l−1∏

k=0

(j − k)

]

(−g)j−lgi−l,

and

B 〈m | n〉A =
1√

m!n!

∑

i,j

Ci
mCj

n(−g)m−ign−jΦ
(2)
ij (g)

with

Φ
(2)
ij (g) = e−2g2

i∑

l=0

i!
(i − l)!l!

[
l−1∏

k=0

(j − k)

]

gj−l(−g)i−l,

where

Ci
m =

m!
(m − i)!i!

and Cj
n =

n!
(n − j)!j!

.

3 Numerical results and discussion

Before studying the physics involved in the Holstein
model, we have to first make sure of the convergence of
our solution. As shown in Figures 1 and 2, we have tried
to find a suitably big number N in our numerical solution
of equations (15) and (16), which guarantees only negligi-
ble terms beyond the subspace under consideration. In the
calculation below we set N = 75 so that high-order terms
are negligible, i.e., cn>75 < 10−23 and dn>75 < 10−23.
Due the big subspace and the good convergence of the ex-
pansion in {|n〉A} and {|n〉B}, we can exactly obtain an

eigenenergy spectrum
{
E(l)

}
and the coefficients

{
c
(l)
n

}

and
{

d
(l)
n

}
.

To check the validity of our approach, we first consider
the case of ε1 = ε2. Figures 3 and 4 give such a compari-
son between the present calculation and the results in [20].
Following the convention in [23], we define εd = ε2 − ε1 to
be the disorder strength. In the absence of site disorder,
our present solution agrees well with that in [20]. Both
the solutions demonstrate that the ground state energies
decrease with the coupling g and finally approach con-
stant values, while the energy variation in excited states
is complicated: the energy spacing becomes small and big
repeatedly with the coupling g, and the higher the energy,
the more frequent the variation.

From now on we consider the situation with different
site energies. For convenience of our description and com-
parison, we will demonstrate in the figures the results by
both our approach and the MLF. We first investigate the
local polaronic character of the electrons, denoted by the
static correlation functions 〈n1u1〉0 and 〈n1u2〉0 with,

〈n1u1〉 / 〈n1〉 =

1
2

[
N∑

i=0

√
i + 1c∗i+1ci +

N∑

i=0

√
ic∗i−1ci

]

/

N∑

i=0

c∗i ci − 2g,

(17)

Fig. 1. Distribution of coefficient cn with n (the phonon num-
ber) in the subspace regarding the operator A. For clarity we
only demonstrate the coefficients regarding the ground state

and the fourteenth excited state denoted by
{

c
(1)
n , c

(15)
n

}
. To

understand the physical meaning of the parameters, see text.

Fig. 2. Coefficient dn distribution with n (the phonon number)
in the subspace regarding the operator B, where for clarity we
only demonstrate the coefficients regarding the ground state

and the fourteenth excited state denoted by
{

d
(1)
n , d

(15)
n

}
.

〈n1u2〉 / 〈n1〉 =

− 1
2

[
N∑

i=0

√
i + 1c∗i+1ci +

N∑

i=0

√
ic∗i−1ci

]

/

N∑

i=0

c∗i ci, (18)

where ni is the number operator of the electron at ith
site, ui is the deformation of the ith site of the crystal,
and 〈〉 is the expectation value with respect to the ground
state wavefunction (we omit the subscript {0} for brevity
and the detailed deduction of equations (17) and (18)
can be found in Appendix). As the summation of equa-
tions (17) and (18) is −2g, we may only calculate one of
them, e.g., equation (18), as shown in Figure 5. It demon-
strates clearly that the agreement between our exact so-
lution and that by MLF in [23] occurs in the regimes of
small coupling (i.e., g < 0.5) and strong coupling (i.e.,
g > 1.5). For the intermediate coupling strength, our so-
lution deviates upwards from that of the MLF. Since the
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Fig. 3. Ground state energy versus coupling g in the absence
of disorder, where Exact1 and Exact2 are solutions in [20] and
in the present work, respectively.

correlation function shows the retardation which is inde-
pendent from the effect of disorder in the weak and strong
coupling limits [23], we should pay attention only to the
intermediate coupling regime. The discrepancy in Figure 5
physically implies that the retardation is actually stronger
than the prediction by the MLF. The reason is that the
MLF does not converge well when the e-ph coupling is
intermediate. It reminds us that, although it has much
improved the solution by the Lang-Firsov transformation
from a description of only the weak coupling regime to
a description of both the weak and the strong coupling
regimes, the MLF is unable to work well in the interme-
diate coupling case. In contrast, our treatment has good
convergence throughout the parametric subspace, which
leads to a solution involving the higher-order correlation
terms overlooked in the MLF. Moreover, as a byproduct,
we have also considered the case of εd = 0, and compared
with the method in [20] which is only applicable to the
ordered case. The comparison confirms that our approach
could also work well in the ordered case.

The relative correlation function χ = 〈n1(u1 −
u2)〉/2g〈n1〉 could examine the behavior of the large-to-
small polaron crossover. Small χ corresponds to a big
polaron with an obvious associated retardation effect, but
when χ approaches 1, this retardation effect becomes neg-
ligible, corresponding to a small polaron. Our interest is
in the crossover regime, as shown in Figure 6 where the
continuous change, in the case of different site energies,
from a big polaron to a small polaron with the increase
of g, should be less sharp, according to our calculation,
than the prediction by MLF in [23]. But in the case of the
same site energies, no difference could be found between
our solution and that by MLF. This comparison shows
again that the higher order correlation terms play visible
roles only in the disordered Holstein model.

Fig. 4. Excited energies versus the coupling g in the absence
of disorder, where Exact1 and Exact2 are solutions in [20] and
in the present work, respectively. We have assumed t = 1.1 in
the calculation.

Fig. 5. Correlation function versus the coupling g, where Ex-
act1 and Exact2 are solutions in [20] and in the present work,
respectively. (., �) are for MLF results from [23]. t = 0.5 is
assumed in our calculation.

We have also calculated the occupation number of the
polaron for the ground state at k = 0 and k = π, respec-
tively, using

n(k = 0) =

1
2

{

1 − E + g2

t
+

1
t

N∑

i=0

[|ci|2 (i+ ∈1) + |di|2 (i+ ∈2)]

}

,

(19)

n(k = π) =

1
2

{

1 +
E + g2

t
− 1

t

N∑

i=0

[|ci|2 (i+ ∈1) + |di|2 (i+ ∈2)]

}

,

(20)
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Fig. 6. Relative correlation function versus the coupling g,
where (�, +) are results from MLF [23], and Exact2 correspond
the present solution. We have used t = 0.5 and ω = 1.0.

Fig. 7. Occupation numbers versus the coupling g, where Ex-
act1 and Exact2 are solutions in [20] and in the present work,
respectively. The dashed curve is for MLF in [23]. t = 0.5 is
assumed in our calculation.

whose derivation can be found in Appendix. The differ-
ence of above occupation numbers is strongly related to
the localization of the polaron. Consider that the system
remains in the ground state, e.g., n(k = 0) much larger
than n(k = π) in the case of a small g, under a certain hop-
ping strength, n(k = π) will become almost the same as
n(k = 0) with the increase of g. Since the disordered effect
suppresses the kinetic energy of the polaron, the difference
of the occupation numbers decreases with respect to the
ordered case. We may find the discrepancy of our present
solution from that in [23] in the regime of 0.2 < g < 1
in Figure 7, which indicates again that our solution could
give more accurate results in the intermediate coupling
regime in the disordered case due to the convergent treat-
ment of the higher order correlation terms.

It is evident from the above results that the approxi-
mate solutions such as the MLF results in [23], are good
enough for the Holstein model in the ordered case, and
are also good in the disordered case for the weak and
strong e-ph couplings. But they cannot work well in the

intermediate coupling regime of the disordered Holstein
model. So the discrepancy of our solution from the MLF
results in [23] in the regime of the intermediate coupling
indicates the complicated physics never discovered previ-
ously. As mentioned in [23], the more disordered effect
leads to a weaker retardation between the electron and
the associated deformation, and also results in more po-
laron crossover. Our solution with the deviation down-
wards from the MLF one shows that there are actually a
slightly stronger retardation and a less intensive polaron
crossover in the disordered situation than the prediction
by [23]. The discrepancy comes from the missing of the
higher order perturbative expansion in [23], because both
the correlation function and the occupation numbers in
the intermediated coupling case are very sensitive to the
higher order correlation terms. We note that the MLF
perturbation could have very fast convergence in both
regimes of weak and strong couplings due to very small
higher-order terms with alternate signs [20]. But in the
intermediate coupling regime, convergence gets worse and
worse in the MLF treatment. As a result, our treatment,
involving all the higher terms, could provide a complete
and accurate description for the Holstein model.

As an efficient method, our treatment could be applied
to a more general situation and be used to study different
characteristics of the Holstein model. As an example, we
investigate the variation of the entropy with respect to
the temperature T and the coupling g1. The entropy is
defined as

Sε1,ε2 = k

(

ln Z − β
∂

∂β
ln Z

)

, (21)

where Z =
∑N

n=1 e−βEn , and β = 1/(kT ), with k the
Boltzmann constant and T the temperature. Figure 8
shows that the more different the on-site energies, the
smaller the entropy for g1 and the small T . It implies that
the entropy becomes sensitive to the large e-ph coupling
at low temperature. Since the larger difference of the on-
site energies would lead to more ordered electronic tunnel-
ing, the entropy reduces with the disordered strength εd.
So it is interesting physically that the system with larger
disorder actually has smaller entropy with respect to the
variation of the e-ph coupling.

4 Conclusion

In summary, we have exactly solved the Holstein model
involving different site energies, which corresponds to the
simplest treatment of disorder. We have compared with
previous work in different cases and shown that our exact
solutions agree well with the results in [20] in the ordered
case, and are also consistent with the MLF solutions in [23]
in the weak and strong e-ph coupling regimes in the pres-
ence of disorder. Our interest is in the intermediate cou-
pling regime, in which the discrepancy is evident between
our solution and that of the MLF. We think our solution
is exact, which could work well throughout the parametric
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Fig. 8. The variation of the entropy with respect to T and
g1 in units of k, where t = 1.1, and (a) εd = 0, (b) εd = 0.2,
(c) εd = 0.6.

subspace for the two-site Holstein model involving disor-
der. Moreover, comparing with purely numerical meth-
ods, our analytical treatment could present more useful
information for understanding the physics hidden in the
Holstein model.

We argue that our method would be very helpful for
testing various approximate solutions, and applicable to
more complicated situations of the Holstein model, e.g.,
with more sites and more complex disordered effects. For
example, the case of more sites corresponds to a multi-
level model. From the viewpoint of mathematics, it could
be transformed to be a series of solvable equations regard-
ing two-level models like equation (4). Physically speak-
ing, we could not simply denote the disordered effect in
such a case by difference of site energies, but by an aver-
age over different site energies. As a result, the treatment
would be more complicated. Nevertheless, it is available
with the framework of our approach.

T.L. is grateful for funding from Sichuan Province, and
M.F. acknowledges thankfully the support from NNSFC
No. 10474118.

Appendix

Here we give the detailed deduction for correlation func-
tions equations (17) and (18). By using n1 = |1〉 〈1|,
n2 = |2〉 〈2|, n = |1〉 〈1| + |2〉 〈2|, n1 · n = n1, n2 · n = n2,
and

〈n1u1,2〉 = 0

〈
n1

[± (
d + d+

) − 2gn
]
/2

〉
0
, (A.1)

where n1 and n2 are number operators with respect to the
first and second sites, respectively, n is the total number

operator, and u1 and u2 are deviations from the balanced
positions regarding the first and the second sites, respec-
tively, we have, with respect to the ground state wave-
function,

〈n1u1〉/〈n1〉 = 0 〈|
{
n1 · [(d + d+)−2gn]/2

} |〉0 /0〈|n1 |〉0
= 0〈|

{
n1 · [(d + d+) − 2g]/2

} |〉0 /0〈|n1 |〉0
=

1
2
(〈ϕ2| 〈2| + 〈ϕ1| 〈1|){|1〉 〈1| [A+

+ A − 4g]}(|ϕ1〉 |1〉 + |ϕ2〉 |2〉)/ 〈ϕ1/ϕ1〉
=

1
2
〈ϕ1|

{
[A+ + A − 4g]

} |ϕ1〉 / 〈ϕ1/ϕ1〉

=
1
2

[
N∑

i=0

√
i+1c∗i+1ci+

N∑

i=0

√
ic∗i−1ci−4g

N∑

i=0

c∗i ci

]

/
N∑

i=0

c∗i ci

=
1
2

[
N∑

i=0

√
i + 1c∗i+1ci +

N∑

i=0

√
ic∗i−1ci

]

/

N∑

i=0

c∗i ci − 2g,

(A.2)

〈n1u2〉 / 〈n1〉 =

0 〈|
{
n1 · [−(d + d+) − 2gn]/2

} |〉0 /0〈|n1 |〉0
= 0〈|

{
n1 · [−(d + d+) − 2g]/2

} |〉0 /0〈|n1 |〉0
=

1
2
(〈ϕ2| 〈2| + 〈ϕ1| 〈1|)

{|1〉 〈1| [−A+ − A]
}

× (|ϕ1〉 |1〉 + |ϕ2〉 |2〉)/ 〈ϕ1/ϕ1〉
=

1
2
〈ϕ1|

{
[−A+ − A]

} |ϕ1〉 / 〈ϕ1/ϕ1〉

=
1
2

[

−
N∑

i=0

√
i + 1c∗i−1ci −

N∑

i=0

√
ic∗i+1ci

]

/
N∑

i=0

c∗i ci

= −1
2

[
N∑

i=0

√
i + 1c∗i+1ci +

N∑

i=0

√
ic∗i−1ci

]

/

N∑

i=0

c∗i ci,

(A.3)

where we have made the above analytical deduction using
equation (5).

Now, let us turn to the deduction of the occupation
numbers equations (19) and (20),

n0,π =
1
2
(|1〉 〈1| ± |1〉 〈2| ± |2〉 〈1| + |2〉 〈2|), (A.4)

n(k = 0) =
1
2
〈| (|1〉 〈1| + |1〉 〈2| + |2〉 〈1| + |2〉 〈2|) |〉

=
1
2
(〈ϕ1|ϕ1〉 + 〈ϕ2|ϕ2〉 + 〈ϕ1|ϕ2〉 + 〈ϕ2|ϕ1〉)

=
1
2

⎧
⎨

⎩

N∑

i=0

|ci|2 +
N∑

i=0

|di|2 +
N∑

ij=0

c∗i djA〈i|j〉B

+
N∑

ij=0

d∗i cjB〈i | j〉A

⎫
⎬

⎭
. (A.5)
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From equations (15) and (16), we have,

N∑

j=0

djA〈i | j〉B = (i+ ∈1 −E − g2)ci/t, (A.6)

N∑

j=0

cjB〈i | j〉A = (i+ ∈2 −E − g2)di/t. (A.7)

So we can simplify (A.5) to be,

n(k = 0) =
1
2

⎧
⎨

⎩

N∑

i=0

|ci|2 +
N∑

i=0

|di|2 +
N∑

i=0

c∗i
N∑

j=0

djA〈i|j〉B

+
N∑

ij=0

d∗i
N∑

j=0

cjB〈i|j〉A

⎫
⎬

⎭

=
1
2

{
N∑

i=0

|ci|2 +
N∑

i=0

|di|2

+
N∑

i=0

|ci|2 (i+ ∈1 −E − g2)/t

+
N∑

i=0

|di|2 (i+ ∈2 −E − g2)/t

}

=
1
2

{
N∑

i=0

[

|ci|2
(

1 +
i+ ∈1 −E − g2

t

)

+ |di|2
(

1 +
i+ ∈2 −E − g2

t

) ]}

. (A.8)

Similarly, we have

n(k = π) =
1
2

{
N∑

i=0

[

|ci|2
(

1 − i+ ∈1 −E − g2

t

)

+ |di|2
(

1 − i+ ∈2 −E − g2

t

) ]}

, (A.9)

n(k = 0) =
1
2

{

1 − E + g2

t
+

1
t

N∑

i=0

[|ci|2 (i+ ∈1)

+ |di|2 (i+ ∈2)]

}

, (A.10)

n(k = π) =
1
2

{

1 +
E + g2

t
− 1

t

N∑

i=0

[|ci|2 (i+ ∈1)

+ |di|2 (i+ ∈2)]

}

. (A.11)
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